Recent Publication

WIP1, a Homeostatic Regulator of the DNA Damage Response, Is Targeted …

페이지 정보

작성자 관리자 댓글 0건 조회 306회 작성일 14-04-07 03:04

본문

http://www.sciencedirect.com/science/article/pii/S1097276513004474

 

Summary


WIP1 (wild-type p53-induced phosphatase 1) functions as a homeostatic regulator of the ataxia telangiectasia mutated (ATM)-mediated signaling pathway in response to ionizing radiation (IR). Here we identify homeodomain-interacting protein kinase 2 (HIPK2) as a protein kinase that targets WIP1 for phosphorylation and proteasomal degradation. In unstressed cells, WIP1 is constitutively phosphorylated by HIPK2 and maintained at a low level by proteasomal degradation. In response to IR, ATM-dependent AMPKα2-mediated HIPK2 phosphorylation promotes inhibition of WIP1 phosphorylation through dissociation of WIP1 from HIPK2, followed by stabilization of WIP1 for termination of the ATM-mediated double-strand break (DSB) signaling cascade. Notably, HIPK2 depletion impairs IR-induced γ-H2AX foci formation, cell-cycle checkpoint activation, and DNA repair signaling, and the survival rate of hipk2+/− mice upon γ-irradiation is markedly reduced compared to wild-type mice. Taken together, HIPK2 plays a critical role in the initiation of DSB repair signaling by controlling WIP1 levels in response to IR.

 

댓글목록

등록된 댓글이 없습니다.

Copyright 2021 © Designed by LHS, ALL RIGHT RESERVED